MODEL EVALUATION AND SELECTION IN MULTIPLE NONLINEAR REGRESSION ANALYSIS
نویسندگان
چکیده
منابع مشابه
teacher educator evaluation model
اگرکیفیت معلم کلاس برای بهبودیادگیری دانش آموزحیاتی است،پس کیفیت اساتیددانشجو-معلمان، یابه عبارتی معلمین معلمان نیزبرای پیشرفت آموزش بسیارمهم واساسی است.ناگفته پیداست که یک سیستم مناسب آموزش معلمان ،معلمین با کیفیتی را تربیت خواهدکرد.که این کار منجربه داشتن مدارس خوب، ودرنتیجه نیروی کارماهرتروشهروندبهتربرای جامعه خواهدشد. اساتیددانشجو-معلمان نقشی بسیارمهم را در سیستم اموزش معلمان درسراسرجهان ای...
Regularized simultaneous model selection in multiple quantiles regression
Simultaneously estimating multiple conditional quantiles is often regarded as a more appropriate regression tool than the usual conditional mean regression for exploring the stochastic relationship between the response and covariates. When multiple quantile regressions are considered, it is of great importance to share strength among them. In this paper, we propose a novel regularization method...
متن کاملConsistency Properties of Model Selection Criteria in Multiple Linear Regression
This paper concerns the asymptotic properties of a class of criteria for model selection in linear regression models, which covers the most well known criteria as e.g. MALLOWS' Cp, CV (cross-validation), GCV ( generalized cross-validation), AKAIKE's AIC and FPE as well as SCHWARZ' BIC. These criteria are shown to be consistent in the sense of selecting the true or larger models, assuming i.i.d....
متن کاملNonlinear Regression Analysis and Nonlinear Simulation Models
This paper is a survey of SAS System features for nonlinear models, with emphasis on new features for nonlinear regression. Topics include automatic calculation of analytic derivatives, estimation with nonlinear parameter restrictions, tests of nonlinear hypotheses, maximum likelihood and generalized method of moments (GMM) estimation, estimation of simultaneous systems of nonlinear regression ...
متن کاملBayesian Fuzzy Regression Analysis and Model Selection: Theory and Evidence
In this study we suggest a Bayesian approach to fuzzy clustering analysis – the Bayesian fuzzy regression. Bayesian Posterior Odds analysis is employed to select the correct number of clusters for the fuzzy regression analysis. In this study, we use a natural conjugate prior for the parameters, and we find that the Bayesian Posterior Odds provide a very powerful tool for choosing the number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling and Analysis
سال: 2007
ISSN: 1392-6292,1648-3510
DOI: 10.3846/1392-6292.2007.12.81-90